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S1. Application to plant cell culture data  

Replicated microarray time course 
Modeling of causal networks has advanced significantly over the last decade using simple 
eukaryotic systems. For example, approaches using synchronized yeast cells sampled at 
short intervals and profiled for gene expression changes have led to the development of 

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btp028?ijkey=iVIiztrwHyfNlRY&keytype=ref�
http://dawningrealm.org/stats/dynamics/�
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gene regulatory models that provide useful information about the cell cycle (e.g. Bickel 
2005; Spellman, Sherlock, Zhang, Iyer, Anders, and others 1998).  
 To determine the extent to which influences between genes can be inferred from a 
microarray time course in a system relevant to crop improvement, we designed an 
experiment using a plant cell suspension system (BMS) that has a history of success as a 
simple cell system for biochemical and gene expression studies. Cells in the stationary 
stage were perturbed by the addition of a single hormone treatment and sampled at 10-
minute time intervals over 150 minutes for measurement of gene expression changes by 
transcriptional profiling. We chose abscisic acid (ABA) because it has relevance to the 
plant’s response to abiotic stresses such as drought (low water availability) and cold (low 
temperature) and because ABA is a relatively well-characterized inducer of gene 
expression (Verslues and Zhu 2005). Based on previous experiments, we identified a list 
of twenty-five ABA response genes that showed a consistent induction in the BMS cell 
culture system by five hours following ABA treatment. Determining which genes 
regulate as many of these twenty-five genes of interest as possible provides evidence for 
stress-relevant parts of the gene network of the system.  
 The rest of this section describes the data analysis results, gene annotations, and 
details of the experimental and preprocessing methods used in preparation for the 
statistical methods specified above. 

Influences between genes 
Application of kinetic model inference 
Figure S1 displays the expression intensities of all 25 genes that were pre-selected as 
regulated by genes to be identified by the models given the data. The posterior 
probabilities were computed using approximations (8), (12), and (14) for each of 25 
genes of interest as regulated by some unknown gene with expression more directly 
changed by the ABA treatment. Table S1 reports marginal probabilities of each 
difference-equation order and what may be interpreted as each interest gene’s probability 
that its regulating gene could be identified on the basis of the expression data. The 
predictions, residuals, and intensities of the probable regulating genes of the four of the 
25 genes for which the first approximation achieved 50% probability are plotted in 
Figures S2-10. In Figures S2-6, the “probability” is ( )1ijP α = y  of equation (8), whereas 

in Figures S7-10, it is ( )1ijP α = y  of  equation (12). Figure S11 quantifies the extent to 
which the posterior probabilities (14) are sensitive to the joint prior distribution of the 
models and parameters represented by equation (13). 
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Regulated 
gene of 
interest 

Marginal posterior 
probability of each order 

over all genes 

Probability that the highest-probability 
gene is regulated by the interest gene 

(maximized separately for each column) 
Probability 
that order 1 

Probability 
that order 2 

1st-order 
conditional 

2nd-order 
conditional 

1st- & 2nd-order 
models 

ID229128 100.0% 0.0% 94.6%* 30.6% 92.5% a 
ID263329 100.0% 0.0% 76.5%* 59.8% 73.3% b 
ID225167 97.6% 2.4% 62.6%* 99.5% 56.9% c 
ID295057 84.8% 15.2% 58.7%* 68.8% 45.6% d 
ID273437 99.7% 0.3% 39.0% 44.9% 35.8% e 
ID272371 98.8% 1.2% 39.4% 47.5% 34.0% f 
ID295063 48.8% 51.2% 42.1% 56.5% 29.4% g 
ID269778 65.0% 35.0% 19.8% 80.6% 28.9% h 
ID221767 75.5% 24.5% 6.3% 99.8% 25.1% i 
ID227718 98.1% 1.9% 25.1% 17.6% 19.5% j 
ID232009 99.9% 0.1% 18.5% 52.8% 14.8% k 
ID246472 88.4% 11.6% 21.3% 66.2% 13.9% l 
ID297343 98.7% 1.3% 17.3% 17.7% 13.9% m 
ID281792 100.0% 0.0% 16.0% 18.8% 12.6% n 
ID277341 93.7% 6.3% 12.4% 28.5% 8.9% o 
ID290708 99.8% 0.2% 10.9% 8.3% 8.8% p 
ID287048 91.6% 8.4% 7.0% 79.5% 6.9% q 
ID248343 72.8% 27.2% 10.0% 25.4% 6.5% r 
ID221443 100.0% 0.0% 11.1% 15.6% 6.5% s 
ID246471 99.6% 0.4% 5.4% 75.1% 4.8% t 
ID274390 99.8% 0.2% 4.8% 46.8% 3.9% u 
ID240829 95.7% 4.3% 4.9% 9.7% 3.4% v 
ID239234 99.2% 0.8% 3.1% 16.1% 2.4% w 
ID296385 99.9% 0.1% 1.9% 20.0% 1.3% x 
ID273436 98.4% 1.6% 0.4% 1.2% 0.3% y 

 
Table S1. Posterior probabilities summarizing the data analysis results. The first two 
numeric columns report (15) and (16) for each gene given in the leftmost column and presumed 
regulated by some dominant regulating gene to be identified by the analysis. The last three 
numeric columns give the posterior probability of the best-fitting model (corresponding to the 
most probable regulating gene) for each of the 25 genes of interest assumed to be regulated by a 
gene responding more directly to ABA treatment. Those three maximum posterior probability 
columns, from left to right, were computed using the models of equations (7), (11), and (13); the 
last percentage column best represents our state of uncertainty in choosing between the 
assumptions behind the other two columns (cf. Figure S11). Details on the genes with a 
regulating gene of at least 50% posterior probability in the first-order column (*) are given in 
Figures S2-10. The data and models provide no reason to infer any other components of the gene 
network unless one has reason apart from this experiment to strongly favor assumptions leading 
to the second-order models; Figures S7-10 are given for that case with the same genes included.  
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Figure S1. Means of observed expression intensities of the 25 genes of interest, each 
assumed to be regulated by a gene that responded more directly to the ABA treatment.  
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Figure S2. Of the 25 genes of interest assumed regulated by at least one regulating gene 
that responded more directly to the ABA treatment, ID229128 (“a” in Table S1) had a 
gene, ID295592, with the highest posterior probability of being the regulator. The model 
fit is quantified in the top two plots; the left plot displays ( )iky t∆  (symbol: ∆) and 

( )ij j iy tβ β+  (symbol: ×), whereas the right plot displays ( )ik tε . The bottom two plots 

give ( )jy t  for each of the two genes, assisting with the physical interpretation: until 120 
minutes after the addition of ABA, the regulating gene steadily accumulates mRNA, 
triggering the regulated gene to produce mRNA at an increasing rate; at t = 130 minutes, 
the concentration of the regulating gene’s transcript is markedly higher, resulting in the 
jump in that of the regulated from 130 minutes to 140 minutes; finally, the move of the 
regulating gene at 140 minutes back to its initial level halts the transcript production of 
the regulated gene, seen to be the same at 150 minutes as at 140 minutes. 
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Figure S3. The regulated gene was chosen because its potentially regulating gene of 
highest probability (Figure S2) exceeded 50%, but with the potentially regulating gene of 
second highest posterior probability shown here. In spite of the much lower model 
probability (4.3%), the fit here does not look much worse, except at 140 minutes after 
treatment: the transcript of the regulating gene does not fall all the way back to its initial 
value. 
 



    Page 7 of 32 
 
 

 
 

 
Figure S4. The assumed regulated gene here (“b” in Table S1), among the genes of 
interest (Table S1), has a regulating gene with the second highest model posterior 
probability. The sudden jumps in the rate of change of the regulated gene are well 
explained by the earlier jumps in the regulating gene, which, unlike that of Figure S2, 
appears to be a repressor. However, the time scale of these fluctuations appears to be 
smaller than that in a cell (Kristin Baetz and Mads Kaern, personal communication), 
perhaps indicating a need to incorporate additional information into the model. 
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Figure S5. The assumed regulated gene here (“c” in Table S1), among the genes of 
interest (Table S1), has a regulating gene with the third highest model posterior 
probability. The physical interpretation here would again be that the regulating gene 
represses the regulated gene. 
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Figure S6. The assumed regulated gene here (“d” in Table S1), among the genes of 
interest (Table S1), has a regulating gene with the fourth highest model posterior 
probability. That posterior probability is just over half, so the activation relationship is 
about as likely as not according to the mathematical framework. The physical 
interpretation here would again be that the regulating gene represses the regulated gene. 
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Figure S7. The best second-difference fit for the regulated gene of Figure S2 (“a” in 
Table S1). 
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Figure S8. The best second-difference fit for the regulated gene of Figure S4 (“b” in 
Table S1). 
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Figure S9. The best second-difference fit for the regulated gene of Figure S5 (“c” in 
Table S1). 
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Figure S10. The best second-difference fit for the regulated gene of Figure S6 (“d” in 
Table S1). 
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Figure S11. The posterior probability versus the relative Occam factor for each of the 
regulated genes of Figures S2-10. As explained in Section S3, the relative Occam factor 
measures departures of the prior distribution from the default, which has a relative Occam 
factor of 1. Here, a gene is predicted to regulate gene i if it maximizes, over all genes, the 
posterior probability that it is the regulator of that regulated gene of interest. That 
maximum probability,  
 { } ( )1,...,max 1 1ij ijj m P α α∈ = ∪ = y , 

is displayed here as a function of the relative Occam factor iΩ , which in turn depends on 
the choice of the conditional prior distributions of the regression coefficients. A plot 
versus the relative prior mass iω  instead of the relative Occam factor would look exactly 
the same according to Section S3. The vertical line corresponds to the values found in 
Table S1 under “1st- & 2nd-order models.” 
 
Gene annotations for the probable interactions 
Agilent profiling is based on a 60-mer array derived from EST sequence information. We 
used the 60-mer oligonucleotide for each of the tags representing the individual genes to 
BLAST against public databases and attempt to establish biological relevance to some of 
the genes identified in the modeling process. Table S2 summarizes the BLAST output for 
each of the eight genes involved in probable interactions according to the first-order 
difference model. 
 ID229128 represents a gene with homology to cold-regulated proteins and is a 
member of a family of stress and ABA responsive genes with homology to 
phosphatidylethanolamine binding proteins (Dal Bosco, Busconi, Govoni, Baldi, Stanca, 
Crosatti, Bassi, and Cattivelli 2003). The biochemical function of this protein, as it relates 
to ABA and abiotic stress, has not been characterized but this gene is induced 13.4 fold 
following 5 hours of ABA treatment in the BMS system (data not shown). ID295592 
presumably regulates ID229128 and represents a gene tag with no significant homology 
to genes of known function and weak homology to proteins that function as transposable 
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elements. Further characterization of ID295592 would be required to understand its 
functional role in stress and ABA signaling. 
 ID263329 corresponds to ABA hydroxylase, an enzyme involved in the 
conversion of ABA into 8’-hydroxyl catabolite products. The gene that probably 
regulates ID263329 corresponds to a TAB2 protein homolog (ID294848). TAB2 is an 
RNA binding protein that functions to enhance chloroplast gene translation. ID225167 
and its presumed regulating gene (ID243382) do not have significant homology to 
proteins of known function. Lastly, ID295057 corresponds to a NAC1 transcription 
factor, a large gene family with members that are associated with stress tolerance 
(Kikuchi and Hirano 2000). The gene predicted to regulate ID295057 corresponds to a 
phospatidylinositol-4-phosphate 5-kinase-like gene which has been previously shown to 
be involved in ABA signaling (Mikami, Katagiri, Iuchi, Yamaguchi-Shinozaki, and 
Shinozaki 1998). 
 

Gene GenBank Reference BLASTX Annotation BLASTX 
Score

ID295592 CN844307.1 ABA95172.1|  transposon protein, putative 1

ID229128 BM382127 CAC12881 cold-regulated protein 8E-33

ID294848 DV023912.1 BAD19229.1 putative Tab2 protein 6E-80

ID263329 BZ736934.1 ABB71585.1| ABA 8'-hydroxylase 1 1E-100

ID243382 AZM5_88405 ABF93726.1 Unknown protein (Oryza sativa) 4E-08

ID225167 AY109653.1 NP_910324.1| unknown protein 4E-24

ID230440 AZM5_1672 TIGR BAD38030.1| 1-phosphatidylinositol-4-
phosphate 5-kinase-like protein 2E-61

ID295057 CV071472 ABD52007 stress-induced transcription factor 
NAC1 2E-18

 
Table S2. Annotations of the genes plotted in Figures S2 and S4-10. Individual Agilent 
60-mer oligonucleotide tags were BLASTed against public databases to arrive at a 
GenBank reference gene. Shaded rows correspond to putative regulators, and bold 
borders separate each putative regulating-regulated pair. 

Case study methods 
Design of the microarray time-course experiment 
Sample collection. Sixty Zea mays Black Mexican Sweet (BMS) cell suspension of 40 ml 
in medium 237 (De Rocher, Vargo-Gogola, Diehn, and Green 1998) were pooled and 
centrifuged at 10,000xg for 15 minutes. These cells were washed once in 500 ml of 237 
lacking 2,4-D and resuspended in the same medium. The cells divided into 45 ml cultures 
in 250 ml Erlenmeyer flasks and grown for 48 h at 28ºC shaking at 160 rpm on an orbital 
shaking platform under dark conditions to allow for acclimation to hormone-free 
medium. To normalize the samples against any uncontrolled variability in culture 
conditions, the cells were pooled again and well mixed before redistribution into 51 
aliquots of 40 ml each in identical 250 ml Erlenmeyer flasks. Six of these cultures were 



    Page 16 of 32 
 
 

 
 

harvested on glass fiber filters on an analytical vacuum filter at time 0 minutes as control 
samples, three of which were used in the expression profiling. Each of the remaining 45 
cultures was treated with a final concentration of 34μM ABA (Sigma Biosciences, St. 
Louis) and sampled by filtering between 10 and 150 minutes later, such that three 
cultures were sampled at each 10-minute interval. Thus, three biological replicates of 
each time point were collected, resulting in 3 reference samples and 45 treatment samples 
from 10 to 150 minutes after the addition of ABA. All sampling was performed on the 
same day with every three treated cultures of the same number of ABA minutes sampled 
at approximately the same astronomical time. 
 Gene expression profiling. For the 48 samples (consisting of 3 at time zero and 
three at every 10 minutes thereafter), a total of 90 slides were hybridized: there were 45 
comparisons to time 0 and a technical replicate (dye swap) for each comparison. Total 
RNA was isolated from frozen ground tissue (Purescript, Gentra System) followed by 
polyA RNA isolation (mRNA Purification kit, Amersham Biosciences).  Samples were 
then amplified and labeled (Cy3 and Cy5) using Agilent’s Low RNA Linear Amp kit and 
purified with Qiagen’s RNeasy column. Each labeled sample was hybridized to a 44k 
Agilent microarray with one of three reference samples (the other three were held in 
reserve) measured at time 0, when ABA was added.  Dye swaps were set up for all 
comparisons to account for any dye bias effects to give a total of 90 slides hybridized.  
The microarray slides were hybridized overnight, washed, and scanned according to 
Agilent’s Two-Color Microarray-Based Gene Expression Analysis protocol.  Images 
were analyzed with Agilent’s Feature Extraction Software (v 9.1) and visually inspected 
for image artifacts.  Further quality control analysis was done using data analysis tools in 
Rosetta’s Resolver database software. Technical replicates (dye swaps) were combined, 
generating a weighted average of the individual values. The probes on the slides 
correspond to 42,044 putative genes (expressed sequence tags), referred to herein as 
“genes.” Since the anticipated number of genes in the Zea mays genome is of the same 
order of magnitude, we use 42,044m = . Intensity data are available from 
http://www.oisb.ca/downloads.htm. 
Data preprocessing 
Whereas the differential equations considered model the dynamics of transcript 
concentrations in a cell, data available from microarrays only give rough measures of the 
total mRNA copy number in all cells of each sample taken from the cell culture or tissue 
of interest. Accordingly, we make the assumption that the microarray intensities to some 
extent reflect cell concentrations up to the second derivative, an assumption that would be 
justified if, for example, the mRNA copy numbers in some synchronous cells of each 
sample are an order of magnitude greater than those of the sample’s cells that have 
different expression dynamics. A more thorough approach would model the relationship 
between single-cell dynamics and the resulting microarray intensities to the extent that 
informative prior distributions would be placed on the number of cells per sample and on 
aspects of interactions between cells. Although such an approach would better quantify 
uncertainty and potentially lead to very different conclusions, it poses significant 
mathematical and computational difficulties. Research to bridge the gap between 
biochemically informed differential equations and the scale of expression currently 
measured by microarrays is currently underway (Wilkinson 2006). 
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 With that caveat in mind, the observed transcript concentrations, ( )jky t , were 
computed up to an irrelevant proportionality constant as follows. After averaging 
intensities over multiple probes corresponding to the same sequences, the two-color 
Agilent microarray referenced by replicate k and time t was hybridized to two cell culture 
samples, yielding two intensity values, ( )jky t+  and ( )jky t− , for gene j. The “+” superscript 
corresponds to a sample extracted at time t after the addition of ABA, whereas the “−” 
superscript corresponds to a reference sample extracted at time 0; the argument “t” in 

( )jky t−  only indicates the time of the sample hybridized to the same slide. The simplest 

approach assuming intensity-concentration proportionality would set ( )jky t  equal to 

( )jky t+ , thereby discarding the information in the reference samples. However, to 
mitigate the effect of microarray-specific variability, we instead applied the correction  
 ( ) ( ) ( ) ( )3

'' 1
3jk jk jk jkk

y t y t y t y t+ − −
=

 = − − ∑ .  

In the event of zero variance between reference samples, the terms enclosed by square 
brackets cancel each other, achieving the same result as the simplest approach. This 
correction also has the desirable property that it does not affect the mean over all 
replicates of the same time: ( ) ( )3 3

1 1
3 3jk jkk k

y t y t+
′′ ′′′′ ′′= =

=∑ ∑ .  

Hypothesis generation 
Gene expression profiling is increasingly applied as a tool for understanding complex 
biological systems. Despite the capability to accurately measure changes in expression of 
a large number of genes through profiling, our ability to extract applicable knowledge 
lags behind, largely due to difficulties in reliably inferring gene interactions as well as a 
lack of functional understanding for individual genes. These limitations are addressed in 
part by the development of statistical methodology for inferring networks of genes on the 
basis of high-throughput expression data. 
 We selected ABA-response genes for modeling that had little previous 
characterization in an attempt to build knowledge by association irrespective of known 
biological function. For four of those twenty-five regulated genes, each of their main 
regulating genes could be identified on the basis of the expression data with at least 50% 
probability according to the first-order difference model. 
 Two of the interactions predicted by this study identified unknown and 
uncharacterized genes (ID295592 and ID243382) each as the  regulator of a largely 
unknown-function target gene (ID229128 or ID225167, respectively). Since the 
biochemical function of these genes is not characterized, an understanding of their 
interaction will require further study. With sufficient additional experiments, a network 
map could be developed that would eventually anchor these genes to known biological 
processes.  
 For the interaction ID263329/ID294848, the regulating gene is modeled as a 
repressor of the regulated ABA hydroxylase. This is interesting in light of the fact that 
ID294848 corresponds to a chloroplast translation factor and RNA binding protein. RNA 
binding proteins have been implicated in ABA function (Sabine, Zsolt, Christian de, 
Thomas, and Stefan 2006) and the chloroplast is the site of ABA biosynthesis (Qin and 
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Zeevaart 1999). Taken together, this putative interaction presents a testable hypothesis 
that a feedback mechanism exists between ABA biosynthesis and degradation and that 
ABA may play a role in signaling from the chloroplast, as has recently been suggested 
(Shen, Wang, Wu, Du, Cao, Shang, Wang, Peng, Yu, Zhu, Fan, Xu, and Zhang 2006).  
 Signal transduction intermediates in the ABA response pathway have been 
identified by genetic analysis and by gene expression studies (Rock 2000), and recently 
two ABA receptors have been identified and characterized (Razem, El-Kereamy, 
Abrams, and Hill 2006; Shen, Wang, Wu, Du, Cao, Shang, Wang, Peng, Yu, Zhu, Fan, 
Xu, and Zhang 2006). However, a linear path from ABA to response gene has not been 
fully elucidated and the issue of cross-talk with other hormone pathways remains 
contentious. Gene network analysis tools presented in this manuscript and in 
development provide a distinct approach from mutant and gene expression analysis that 
may serve to clarify the complexity in how genes interact following a hormone stimulus. 
Supporting this idea, our analysis identified a transcription factor from the NAC family 
(ID295057) that appears to be regulated by a regulating gene involved in inositol 
triphosphate signaling (PIPK), which has been demonstrated to play a role in ABA 
signaling (Lin, Ye, Ma, Xu, and Xue 2004; Mikami, Katagiri, Iuchi, Yamaguchi-
Shinozaki, and Shinozaki 1998). The identification of ID230440 as a regulating repressor 
of ID295057 is particularly significant since PIPK is thought to be involved in re-setting 
the IP3 signal (Mikami, Katagiri, Iuchi, Yamaguchi-Shinozaki, and Shinozaki 1998), 
whereas NAC genes have been characterized as positive regulators of the ABA signal 
(Kikuchi and Hirano 2000). 

Computation time 
In the 32-bit Windows implementation of R version 2.7.1 with a 2.3 GHz processor and 3 
GB of RAM, it takes 6 minutes to compute the 42,044 model-averaged posterior 
probabilities corresponding to each gene of interest or 150 minutes for all 25 genes of 
interest. Thus, seeking regulators of all 42,044 genes would require about 6 months on 
that platform. The use of C or another low-level language instead of R could make such 
genome-wide scans feasible with similar hardware. 
 

S2. Application to bacteria and yeast data sets 

Bacteria and yeast data sets 
To quantify the performance of our models, we chose four sets of public data: two 
bacteria data set (Kao et al., 2004; Bansal et al., 2006) and two yeast data sets (Spellman 
et al., 1998; de Lichtenberg et al., 2005). All of the data have been normalized by the 
authors. 
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Table S3. Attributes of the two E. coli data sets.  
 
 

 Data set 
Spellman et al., 

1998  
de Lichtenberg et. al., 

2005  
Strain DBY8724 CDC28-13 

Time interval 7 min 10 min 
Number of time points 18 17 
Number of cell cycles 2 2 

Number of ORFs 6178 6214 
Data condition Missing data Complete data 

Table S4. Attributes of the two S. cerevisiae data sets. The open reading frames (ORFs) 
in the two yeast data sets include ORFs currently considered uncharacterized or dubious 
as well as those considered verified.  
 

The genes of interest 
From a search of the literature, we culled a set of genes reported to be regulated to serve 
as the targets of interest. In total, 55 E. coli genes and 43 S. cerevisiae genes were 
selected. The genes are categorized into 12 groups on the basis of reasons for selection; 
the genes and their groups are listed in the supplementary Excel spreadsheet “results.xls”.  
 The E. coli genes appear in five groups labelled B1 to B5. Group B1 contains 11 
LexA-regulated genes in the SOS pathway (Quillardet, et al., 2003). (The SOS pathway 
is an important regulatory network found in many bacteria that mediates the response to 
DNA damage.) Group B2 contains genes which are considered highly upregulated by 
RpoS, that is, genes for which the mean expression ratio is greater than 4 with P-values 
under 0.001 (Patten, et al., 2004). Group B3 contains genes from the same paper which 
are considered downregulated using the equivalent criterion to the genes in Group B2. 
Groups B4 and B5 contain upregulated and downregulated genes, respectively, following 
an acid shift (Kannan, et al., 2008).    
 The S. cerevisiae genes of interest are categorized into seven groups (labelled Y1 
to Y7). The genes in the first three groups were identified as strongly cell cycle-regulated 
genes in Spellman et al. (1998). This study used a statistic called “Fourier score” to 
estimate how closely the periodicity in the expression of each gene follow matched the 

 Data set 
Kao et al., 

2004 
Bansal et al., 

2006 
Strain BW25113 MG1655 

Time interval 12 min 1 h 
Number of time points 6 6 

Number of genes 4345 4290 
Data condition Missing data Complete data 
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period of the cell cycle. High Fourier scores were assumed to indicate cell-cycle-coupled 
regulation. P-values were calculated using a reference distribution created by randomly 
permuting real profiles and calculating Fourier scores for the resulting artificial profiles. 
Groups Y1 to Y3 contain genes assigned as regulated with decreasing confidence. Genes 
in Group Y1 have Fourier scores greater than 10 with p-values below 0.05 and false 
discovery rates (FDRs) below 10%. The genes in Group Y2 have high Fourier scores for 
which the p-values are still below 0.05 but for which the FDRs are between 10% and 
40%. Group Y3 contains genes having Fourier scores such that the p-values are between 
0.05 and 0.2 and the FDRs are below 20%. 
 The genes of Group Y4 are considered strongly regulated in Spellman et al. (1998) 
but not in de Lichtenberg et al. (2005). Group Y5 contains four cell cycle-regulated genes 
which are induced by alpha factor (Spellman et al., 1998). In Group Y6, we included two 
weakly expressed cell cycle-regulated genes (de Lichtenberg et al., 2005) to test the 
ability of our model to predict not just strongly regulated genes but also weakly regulated 
genes. Finally, the three genes in Group Y7 are hypothesized to be related to each other 
on the basis of a nonparametric method of reconstructing gene networks (Bickel, 2004). 

Prediction results 
For each target gene considered regulated, three posterior probabilities were separately 
maximized over all genes: the posterior probabilities of the first-order model (7), the 
second-order model (11), and the average model (13), thereby finding, for each model, 
the gene with the highest probability of regulating each gene of interest. The annotations 
of regulating genes were checked in EchoBASE, GeneDB, and the Saccharomyces 
Genome Database for E. coli genes and S. cerevisiae genes. 
 We found how many of the genes that maximize the posterior probability are also 
putative transcription factors (reported in Figures S12-15). These comparisons indicate 
that the second-order model and average model are better able to predict transcription 
factors than the first-order model since most of the putative transcription factors have 
posterior probabilities greater than 0.5 in the second-order model and the average model.  
 Figures S12-15 show the first-order, the second-order, and the average models for 
each data sets. These figures indicate that the number of putative transcription factors in 
the E. coli data sets is more than in the S. cerevisiae data sets, and also that the regulating 
genes of E. coli have higher posterior probabilities than those in S. cerevisiae. These 
results may reflect the fact that S. cerevisiae gene networks are more complex than those 
of E. coli.  
 Information on the genes of Figures 1-3 and S12-15 is available in the 
supplementary Excel spreadsheet “results.xls.” Some entries in the spreadsheet are 
marked by "NA" to indicate that one of the regulated genes (YMR307W) in the S. 
cerevisiae list is not included in the de Lichtenberg et al. (2005) data set. The spreadsheet 
also gives the estimates of coefficients ijβ  and ijβ  for the genes of highest posterior 
probabilities.  
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Figure S12. Results for the E. coli data set from Kao et al. (2004). The posterior 
probabilities of regulation for the average (equation (14)), first-order (equation (8)), and 
second-order (equation (12)) models are shown as “average,” “order1,” and “order2,” 
respectively. Within a given model, each triangle represents a probability-maximizing 
gene that corresponds to a different gene of interest. Black triangles represent probability-
maximizing genes listed in the EchoBASE as putatively encoding transcription factors 
(TFs), and gray triangles denote other probability-maximizing genes.   
 
 
 
 

 
Figure S13. Results for the E. coli data set from Bansal et al., 2006. Figure labels and 
symbols are as in Figure S12. 
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Figure S14. Results for the S. cerevisiae data set from Spellman et al., 1998. Figure 
labels and symbols are as in Figure S12. 
 
 
 
 
 

 
Figure S15. Results for the S. cerevisiae data set from de Lichtenberg et al., 2005. Figure 
labels and symbols are as in Figure S12.  
 
 
 Table 1 of the main text reports estimates of the Area Under the receiver 
operating characteristic Curve (AUC) computed by 

 { }( )1 ( , ) : {1,2,.., }, {1,2,.., },TF NTF i j
TF NTF

i j i n j n x y
n n

∈ ∈ > , 
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where ix is the posterior probability associated with the ith of TFn  putative transcription 
factors and jy  is the jth of NTFn  genes that are not transcription factors. The AUC is the 
frequentist probability that the posterior probability of a gene randomly chosen from the 
population of putative transcription factors is greater than the posterior probability of a 
gene randomly chosen from the population of genes that are not putative transcription 
factors.  Figure S16 displays the estimated AUCs for each of the four data sets.   
 

 
Figure S16.  The AUC estimates of the four data sets according to first-order, second-
order, and average models. The same information appears in Table 1 in the main text. 
 
 The numbers of genes or ORFs in the data sets are roughly equal to the genome 
sizes (5800 to 6000 genes in the yeast genome; 4500 genes in the bacterial genome). 
Thus, for the purpose of our calculations of the posterior probabilities, the value of m in 
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equations (8) and (12) was set equal to the number of genes or ORFs that are represented 
in each data set (Tables S3 and S4). 
 

S3. Sensitivity to the prior distribution 

Implicit priors versus explicit priors 
Although sharing the computational practicality of the BIC approximation, Neyman-
Pearson hypothesis testing lacks its coherency, defined as the property that the (implicit) 
prior distribution stays the same as the sample size increases (Efron and Gous 2001). On 
the other hand, since the explicit prior distributions of Bayesian methods have been 
criticized for their subjective or arbitrary selection, the issue of sensitivity of posterior 
probabilities (14) to the specification of the joint prior distribution of the models and 
parameters represented by equation (13) will be addressed. The following equations had 
no bearing on our data analyses, but are included for interested readers. 

Sensitivity to prior probability mass 
Let { } ( )1,...,arg max 1 1ij ijj mJ P α α∈= = ∪ = y . Suppose iω , the ith relative prior mass, is 
the ratio of the prior probability that gene J is the dominant gene regulating of gene i to 
the prior probability that each other gene ( )j J≠  is that regulating gene. Then 

( )1 1ij ijP α α= ∪ = y  is approximately 
 
  ( ) ( ) ( )( ) ( ) ( )( )2 2ˆˆ n n

ij i ij ij i iC I j J I j Jπ ω σ σ ω− Τ − − Τ −= + ≠ + =  (17) 

 
with ( )1

1m
ij ij

π ω′′=
=∑  redefining iC .  

Sensitivity to prior probability density 
To study the sensitivity to the prior densities of regression coefficients ijβ  conditional on 

1ijα = , again let ( )1 1ijP mα = = , i.e., 1iω = . Since the BIC approximation  
 
 ( ) ( )( ), ,1 BF sup 1

ij i iij ij i ij i iP f cβ β σα χ α χ= = ≈ =y y   

 
that led to equation (8) has neglected these conditional priors, it is now replaced with a 
closer approximation that includes them (MacKay 2002): 
 
 ( ) ( )( ), ,1 sup 1 ,

ij i iij ij ijP fβ β σα α φ= = =y y


  

 
where the maximum likelihood estimate has been substituted for the posterior mode and 

ijφ  is the Occam factor (Erickson and Smith 1988). The Occam factor is, conditional on 
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1ijα = , the ratio of the posterior uncertainty in ,ijβ  ,iβ and iσ  to the prior uncertainty in 
the same parameters, heuristically speaking. Thus, approximation  (8) becomes 
 

 ( ) ( )( )( ) 11

'1,
ˆ ˆ1 .

nm
ij ij ij ij ijj j j

P α φ φ σ σ
−Τ −

′ ′= ≠
= = +∑y


 

 
For the purpose of assessing prior sensitivity, define iΩ , the ith relative Occam factor, by 
  
 ( ) ( )ij iI j J I j Jφ ∝ ≠ +Ω = . 
 

iΩ is the ratio of the Occam factor of gene J to the Occam factor of each gene j J≠ . The 
interpretation is straightforward: if observing the data decreases the regression parameter 
uncertainty of the Jth gene more than it decreases the regression parameter uncertainty of 
each of the other genes, then 1iΩ < ; otherwise, 1iΩ ≥ .  

 Generalizing to regression coefficients ijβ  and ijβ  conditional on 1ijα =  and 

1ijα = , respectively, let ( )1ijP α =  ( ) ( ) 11 2ijP mα −= = =  and assume that the Occam 

factor, denoted by ijφ , is the same for models (2) and (3). Then the use of relative Occam 

factor iΩ  yields ( ) ( )1 1ij ij ij iP α α π= ∪ = = Ωy ; here, ( )ijπ •  is the function defined by 

equation (17) and J is set identically. Posterior probability ( )ij iπ Ω  can be plotted for 
each data set analyzed; see, e.g., Figure S11. 
 

S4. Methods of handling missing data 
 
Since the data sets of Section S2 are not complete, we faced what is known in the 
statistics literature as the missing data problem. We assumed that the probability of 
missingness was independent of the values of both the missing and observed data; this 
assumption is termed “Missing Completely At Random” (MCAR). Under the MCAR 
assumption, we have two options: (i) available-case analysis, which uses just the 
available values of genes in the analysis; or (ii) imputation, which first predicts the 
missing values and then analyzes the complete data (Little and Rubin (2002)). A 
simulation study demonstrated that the two methods of dealing with missing data show 
the same performance. We used imputation rather than available-case analysis because 
we need at least five measurements to apply our method (three time points to find 
residuals and two measurements to calculate second forward differences) and the Kao et 
al. data has less than five time course measurements for some genes. To impute the 
missing data, missing values were replaced by the average of the values of their 
immediate neighbours, and if two or more data are missing side by side, their values were 
replaced by the average of their neighbouring data points. 
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Simulation study 
To evaluate the performance of available-case analysis versus our imputation method, we 
carried out a simulation study. Our simulation not only compared these two methods of 
dealing with missing data but also checked the accuracy of our algorithm when the noise 
was increased. In the first step, we generated 10,000 vectors, each with 10 time-course 
measurements equal to sin( )t  ( t  is time from 1 to 10) plus normally distributed random 
deviates. The mean of the normal distribution for each vector was picked randomly from 
uniform distribution with limits (0.2, 1); the standard deviation of each normal 
distribution was 0.4.  These vectors represent data from a microarray with 10,000 genes; 
this set of data was kept as complete data. In the second step, we simulated a regulated 
gene by making it depend on one of the genes from previous step. The regulated gene is 
simulated according to the first-order model: 0( 1) ( ) ( )x t x t x tβ β ε+ − = + + , where 

0.7β = , 0 0.5β = , and the noise ( )tε  follows a normal distribution with zero mean and 
constant standard deviation. The noise standard deviation (σ ) took values in {0, 0.01, 
…., 0.20} in different simulations. In the third step, we randomly deleted 20% of each 
data set. In the fourth step, we used equations (8), (12), and (14), to compute the posterior 
probabilities for complete data. We repeated steps one, two, and four 100 times for each 
of the 21 values of the standard deviation, thereby simulating the analyses of 2100 
microarray data sets. These simulations indicated that the first-order model is able to find 
the correct regulated gene when  σ <0.06 β  and is able to find the correct regulating gene 
more than 50% of time, when  σ <0.14 β ; also, the posterior probability of the first-order 
model was greater than the posterior probability of the second-order model for all 
simulations.  
 To compare the two missing data methods, we repeated steps one through four 50 
times for each value of the standard deviation for incomplete data for a total of 1050 
simulated microarrays. In step four, posterior probabilities were calculated by using both 
the imputation and available-case analyses. Our simulations indicated that both methods 
find the correct gene when the noise is zero and when the first-order model is assumed. 
When the noise was small (σ ≤0.04 β ), the available-case method performed slightly 
better than imputation and vice versa when noise was increased, as seen in Table S5. 
Results in this table are under the assumption that the first-order model (equation (8)). 
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Standard 
deviation 
(σ ) 

Complete-data 
(no missing) 

Complete-data         
(imputed) 

Incomplete-data 
(available-case) 

0 100% 100% 100% 
0.01 100% 95% 100% 
0.02 100% 92% 96% 
0.03 100% 90% 94% 
0.04 99% 90% 82% 
0.05 95% 82% 68% 
0.06 87% 80% 68% 
0.07 71% 70% 58% 
0.08 64% 64% 42% 
0.09 55% 40% 32% 
0.10 47% 36% 22% 
0.11 32% 28% 16% 
0.12 27% 20% 12% 
0.13 25% 16% 12% 
0.14 23% 14% 12% 
0.15 18% 12% 8% 
0.16 16% 10% 8% 
0.17 11% 8% 6% 
0.18 10% 8% 4% 
0.19 8% 6% 4% 
0.20 6% 6% 4% 
 
Table S5. Percentage of finding the correct regulating gene for complete and 
incomplete data. Our algorithm was applied to simulated complete and incomplete data 
for different levels of noise. To deal with incomplete data, imputation and available-case 
methods are used.  
 

S5. Comparisons to two previous methods 
 
Boolean logic, Bayesian networks, graph theory, additive linear or generalized linear 
models, differential equations, and stochastic models have all been used to infer 
regulatory networks. Some of these methods are easy to apply and do not need 
substantive prior information, whereas the keypad eight others are more demanding but 
tend to be more accurate. The two methods highlighted here were emphasized by 
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anonymous reviewers; other examples of alternative methods are referenced in the 
Introduction section of the main text. 

Network identification by multiple regression 
Gardner et al. (2003) presented a network generated using multivariate regression. They 
assumed that the cell under investigation is at equilibrium near a steady-state point. They 
presented a rapid and scalable method to construct prediction model of genes and protein 
regulatory network without using previous information on the network structure or 
function. This method is fast and simple, but the algorithm cannot be applied to time 
course data.  

Inferelator 
In recent work, Bonneau et al. (2006, 2007) presented a method for deriving genome-
wide transcriptional regularity interactions. This method, Inferelator, uses standard 
regression and model shrinkage techniques to select parsimonious predictive models for 
gene expression as a function of levels of transcription factors, environmental influences, 
and interaction between these factors. This method enables simultaneous modelling of 
equilibrium or steady-state and time-course expression levels. They applied L1-shrinkage 
to select the predictor and employed tenfold cross validation to determine the optimal 
value for the shrinkage parameter. They validated their results by further experimentation 
and also compared them with previous findings. Inferelator has several strengths: (i) 
since the constructed network is dynamic, it discovers causal relationships by using a 
time-course expression data between genes; (ii) the modelling of interactions between 
environmental and transcription factors enables researcher to answer the question of how 
a simple genetic change or environmental perturbation influences the transcriptional 
behaviour of a an organism; (iii) the method is not restricted to data with fixed time 
intervals between measurements. However, to derive accurate results, this algorithm 
requires extensive quantitative information, which is generally not available, particularly 
for large regulatory networks. Bonneau et al. (2007) used 266 microarray experiments for 
construction of the network and 147 microarray experiments for validation of predictions. 
For this large data set, they needed to reduce the dimension of the search space by 
grouping co-regulated genes into clusters and assuming that the mean expression level of 
each group of co-regulated genes is influenced by the level of other factors in the system. 
Investigating all potential regulating genes in the genome was computationally infeasible, 
so they found putative transcription factors experimentally. This algorithm is useful for 
investigating the relationship between transcription and environment factors, but a large 
set of carefully structured data must be available.  
 Using a simple but flexible model enabled us to consider all genes in the genome 
as potential regulators and to make inferences on the basis of relatively small data sets. 
Like Inferelator, the method presented in our study takes advantage of first-order and 
second-order dynamic models but with stronger assumptions instead of more stringent 
data requirements. Our algorithm may not need as much data since it relies on a model 
with only three parameters per gene-gene relationship and is constrained to only one 
regulator of each gene, whereas Inferelator depends on a model with more parameters 
and does not share the constraint. Consequently, our method will have greater statistical 
power to the extent that our assumptions approximate the biological system but can also 
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yield unreliable networks to the extent that our assumptions are violated.  As is generally 
the case, the realism and complexity of statistical models should increase with data 
availability. Having insufficient data or inappropriately structured data limits options for 
models in data analysis and may result in misleading assumptions. This underscores the 
importance of involving experts in statistics and bioinformatics when planning 
experiments for network reconstruction. For example, the experiment described in 
Section S1 was designed collaboratively as noted in Section S6. 
 Our algorithm is presented in the main paper with the restriction of equal 
sampling times, but it is possible to relax this condition for each gene of interest by fitting 
a spline or other polynomial to the data and then computing the first and second 
derivatives of the polynomial instead of taking first and second differences. The posterior 
probabilities for each gene of interest would then be computed by replacing ( )iky t∆  in 

equations (6) and (7) with the first derivative and by replacing ( )2
iky t∆  in equation (11) 

with the second derivative. 
 

S6. Contributions of each author 
 
DRB made the kinetic model approximations, developed the statistical methods of the 
main text and Section S3, analyzed the data of Section S1, drafted the manuscript, helped 
design the experiment of Section S1, and provided guidance for the work of Sections S2, 
and S4, and S5. ZM helped draft the manuscript, analyzed the yeast and bacteria data sets 
(Section S2), carried out the simulation study of Section S4, described previous 
approaches (Section S5), and corrected an error in some plots of Section S1. PH helped 
draft the manuscript, found the yeast and bacteria data sets, chose the genes of interest for 
their analyses, and used the results to validate the methods, as described in Section S2. 
MB helped draft the manuscript and carried out the gene expression profiling, including 
hybridization, labeling, amplification, quality control, and combination of technical 
replicates for Section S1. SJL helped draft the manuscript, and designed and executed the 
sample collection of Section S1, including pooling, centrifugation, and harvesting. NB 
helped draft the manuscript, designed the experiment, provided guidance in the sample 
collection, chose the plant genes of interest, and participated in sample harvesting for 
Section S1. 
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